Search results for "boundary data"
showing 7 items of 7 documents
Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces
2006
MSC (2000) Primary: 31C35; Secondary: 31C45, 30C65 In this paper, we study the relationship between p-harmonic functions and absolutely minimizing Lipschitz extensions in the setting of a metric measure space (X, d, µ). In particular, we show that limits of p-harmonic functions (as p →∞ ) are necessarily the ∞-energy minimizers among the class of all Lipschitz functions with the same boundary data. Our research is motivated by the observation that while the p-harmonic functions in general depend on the underlying measure µ, in many cases their asymptotic limit as p →∞ turns out have a characterization that is independent of the measure. c
Sobolev homeomorphic extensions
2021
Let $\mathbb X$ and $\mathbb Y$ be $\ell$-connected Jordan domains, $\ell \in \mathbb N$, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism $\varphi \colon \partial \mathbb X \to \partial \mathbb Y$ admits a Sobolev homeomorphic extension $h \colon \overline{\mathbb X} \to \overline{\mathbb Y}$ in $W^{1,1} (\mathbb X, \mathbb C)$. If instead $\mathbb X$ has $s$-hyperbolic growth with $s>p-1$, we show the existence of such an extension lies in the Sobolev class $W^{1,p} (\mathbb X, \mathbb C)$ for $p\in (1,2)$. Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be relaxed. We also consider the existence of $W^{…
Modelling uncertainties in phase-space boundary integral models of ray propagation
2020
Abstract A recently proposed phase-space boundary integral model for the stochastic propagation of ray densities is presented and, for the first time, explicit connections between this model and parametric uncertainties arising in the underlying physical model are derived. In particular, an asymptotic analysis for a weak noise perturbation of the propagation speed is used to derive expressions for the probability distribution of the phase-space boundary coordinates after transport along uncertain, and in general curved, ray trajectories. Furthermore, models are presented for incorporating geometric uncertainties in terms of both the location of an edge within a polygonal domain, as well as …
Multidimensional Borg–Levinson theorems for unbounded potentials
2018
We prove that the Dirichlet eigenvalues and Neumann boundary data of the corresponding eigenfunctions of the operator $-\Delta + q$, determine the potential $q$, when $q \in L^{n/2}(\Omega,\mathbb{R})$ and $n \geq 3$. We also consider the case of incomplete spectral data, in the sense that the above spectral data is unknown for some finite number of eigenvalues. In this case we prove that the potential $q$ is uniquely determined for $q \in L^p(\Omega,\mathbb{R})$ with $p=n/2$, for $n\geq4$ and $p>n/2$, for $n=3$.
Lévy flights and Lévy-Schrödinger semigroups
2010
We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.
Brownian motion in trapping enclosures: Steep potential wells, bistable wells and false bistability of induced Feynman-Kac (well) potentials
2019
We investigate signatures of convergence for a sequence of diffusion processes on a line, in conservative force fields stemming from superharmonic potentials $U(x)\sim x^m$, $m=2n \geq 2$. This is paralleled by a transformation of each $m$-th diffusion generator $L = D\Delta + b(x)\nabla $, and likewise the related Fokker-Planck operator $L^*= D\Delta - \nabla [b(x)\, \cdot]$, into the affiliated Schr\"{o}dinger one $\hat{H}= - D\Delta + {\cal{V}}(x)$. Upon a proper adjustment of operator domains, the dynamics is set by semigroups $\exp(tL)$, $\exp(tL_*)$ and $\exp(-t\hat{H})$, with $t \geq 0$. The Feynman-Kac integral kernel of $\exp(-t\hat{H})$ is the major building block of the relaxatio…
Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement
2022
We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured by a two-sided reflection. Depending on the specific reflection "mechanism", the inferred jump-type processes differ in their spectral and statistical characteristics, like e.g. relaxation properties, and functional shapes of invariant (equilibrium, or asymptotic near-equilibrium) probability density functions in the interval. The analysis is carried out in conjunction with attempts to give meaning to the notion of a reflecting L\'{e}vy process…